
Geometric magnetism in massive chaotic billiards

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1997 J. Phys. A: Math. Gen. 30 2853

(http://iopscience.iop.org/0305-4470/30/8/027)

Download details:

IP Address: 171.66.16.112

The article was downloaded on 02/06/2010 at 06:16

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/30/8
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen.30 (1997) 2853–2861. Printed in the UK PII: S0305-4470(97)79504-0

Geometric magnetism in massive chaotic billiards

M V Berry and E C Sinclair
H H Wills Physics Laboratory, Tyndall Avenue, Bristol BS8 1TL, UK

Received 12 November 1996

Abstract. Geometric magnetism is a post-adiabatic reaction force exerted by a fast system
on a slow system coupled to it. Here it is demonstrated analytically and numerically that a
heavy (slow) uncharged billiard boundary,∂D, swerves, on the average, because of geometric
magnetism exerted through elastic impacts from a light (fast) charged particle moving inside∂D
in a magnetic field, for both regular and chaotic fast motions.

1. Introduction

Massive billiards are models for classical coupled fast and slow motions. A planar domain
D (figure 1) has an uncharged rigid massive boundary∂D that can be shifted by elastic
impacts from a light particle moving inside it;∂D has massM and the light particle has
massm � M and chargeq. We assume∂D has a large moment of inertia and so can be
translated but not rotated; a way of implementing this is shown in figure 1. There is an
external magnetic fieldB = BeZ perpendicular to the plane, so that the light particle moves
in arcs of Larmor circles. The system has four freedoms, namely the position coordinates
r = {x, z} of the light massm, and the position coordinatesR = {X, Y } of the centre of
mass of the heavy boundaryM. We shall be particularly interested in billiards for which
the light particle moves chaotically for frozen∂D.

To understand fast/slow systems, it is convenient to make an approximate adiabatic
separation of the two time scales. Then the effective dynamics of the slow motion is
governed by reaction forces obtained by averaging over the motion of the fast system. For
massive billiardsr(t) is the fast motion andR(t) the slow motion, and adiabatic averaging
requires thatm makes many collisions while∂D hardly moves: defining the fast velocity
v ≡ ṙ and the slow velocityV ≡ Ṙ, the requirement is|v| � |V |.

In the most elementary adiabatic averaging (Arnoldet al 1988, Lochak and Meunier
1988), the reaction force is the gradient with respect toR of the average energy of the
fast system for fixedR; in quantum mechanics this would be the Born–Oppenheimer force
(Messiah, 1962). For the systems we study here, this force is zero because of the translational
invariance. Our focus of attention will be on one of the post-adiabatic reaction forces linear
in V , arising at the next level of approximation, namelygeometric magnetism.

Obviously, the linear forces can, if local in time and space, be written in the form

F = −K(R) · V (1)

familiar from linear response theory, whereK is a 2×2 matrix obtained by averaging the fast
motion (Berry and Robbins 1993a). Geometric magnetism arises from the antisymmetric
part of K, and is the force

FG = V ∧BG(R) (2)
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Figure 1. Coordinates and geometry of the massive billiard. The movable part of the boundary
∂D has massM, centre of mass atR with velocityV , and the light particle has massm, position
r and velocityv. The long arms provideD with a large moment of inertia, preventing rotation.

where the geometric magnetic fieldBG depends on the averaged fast motion. Another
interpretation ofBG is that its integral over a surface inR space gives the quantal geometric
phase (Berry 1984, Shapere and Wilczek 1989) or (in integrable cases) the classical (Hannay
1985) angle accumulated by the fast system when transported round the boundary∂S. The
reaction force of geometric magnetism is well known in quantum mechanics (Mead and
Truhlar 1979, Jackiw 1988, Berry 1989, Cottingham and Hassan 1990, Yin and Mead 1992),
and it has been calculated classically for some cases where the fast motion is integrable
(Berry and Robbins 1993b, Berry 1996). Here we will demonstrate theoretically (section 2)
from elementary arguments and general formulae (Robbins and Berry 1992, Berry and
Robbins 1993b), and also computationally (section 3), that it occurs in chaotic classical
systems too. We will show that for massive billiards the geometric magnetic field takes the
simple form

BG(R) = qB (3)

so that the slow system, although uncharged, inherits the magnetism of the fast. This result
is a special case of fast motion whoseR dependence is obtained by canonical transformation
(Robbins 1994).

The symmetric part ofKS of K givesdeterministic friction, that is a dissipative force

FD = −KS(R) · V (4)

(Wilkinson 1990, Jarzynski 1992, 1993a, 1995, Berry and Robbins 1993a). In massive
billiards there is no deterministic friction, because there is no ‘Aristotelian’ reference frame
with respect to which∂D can be slowed down.

Geometric magnetism and deterministic friction are not the only post-adiabatic reaction
forces. At least three others have been identified: an electric counterpart (Berry 1989, Berry
and Robbins 1993b) of geometric magnetism, a velocity-dependent modification of the slow
mass (Littlejohn and Weigert 1993), and a memory force (Jarzynski 1993b) depending on
the slow historyR(t). Beyond these, little is known about the hierarchy of reactions.
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2. Theory

If the wall ∂D is represented by the interaction potentialU(r −R) with the fast particle,
the Hamiltonian for the massive billiard is

H(r,p,R,P ) = P 2

2M
+ (p−

1
2qB ∧ r)2
2m

+ U(r −R) (5)

wherep andP are the fast and slow momenta, and we have chosen the symmetric gauge
for the magnetic vector potential for the fast particle. We seek the approximate equation of
motion for the slow motionR, in the adiabatic limitM � m.

An elementary procedure for calculatingBG(R) is based on the observation that the
massive billiard has total chargeq and the only external force comes from the applied
field B, so that ‘macroscopically’, that is as seen from afar, the internal motion would be
insignificant and the whole system should move magnetically as a single charged particle
with the total massMtot = M+m ≈ M, that is in a Larmor circle. To see how this emerges,
we start with the exact equations of motion:

MV̇ = +∇U(r −R)
mv̇ = −∇U(r −R)+ qv ∧B. (6)

Adding these, we get

MtotV̇cm = qv ∧B (7)

whereVcm is the velocity of the centre of mass

Rcm ≡ MR+mr
M +m (8)

of the whole system.
Integrating (7) and taking the cross product withB gives the fast position in terms of

Vcm as

r −C = −MtotVcm∧B
qB2

. (9)

The vectorC is a constant of motion, generalizing the arbitrary centre of the Larmor circle
for a single particle in a magnetic field (for a discussion of this invariant, see Avronet al
(1978)). Hereafter we fix this trivial translational freedom by settingC = 0. Then the
distance of the light particle from the origin at timet is

r(t) = MtotVcm(t)

qB
. (10)

Now we invoke the adiabatic approximation, and assume there exists a time,Tad, for
whichm collides many times with∂D while ∂D moves very little. For ergodic fast motion
m explores D uniformly. Then, averaging overTad gives

〈r(t)〉 ≈ R(t) 〈Vcm(t)〉 ≈ MṘ(t)+m〈ṙ(t)〉
m+M = M

Mtot
V (t). (11)

Thus (9) becomes

R ≈ −MV ∧B
qB2

. (12)

This is the approximate slow equation of motion. Its solution shows that the boundary
moves in a circle with radius

R = MV

qB
(13)
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and with constant speedV = |V |. The same result could have been obtained by averaging
the equation of motion (7) directly. We see that although∂D is uncharged it inherits
magnetism fromm. This is the geometric magnetism claimed in (2) and (3), with the
Lorentz force involvingBG = qB.

Now we carry out the formal exercise of showing thatBG = qB follows from the
general formula for geometric magnetism (Berry and Robbins 1993a), valid when the fast
motion is chaotic for frozenR. The formula is

BG = − 1

2∂E�
∂E

[
∂e�

∫ ∞
0

dt 〈(∇h)t ∧ ∇h〉E
]
. (14)

The symbols have the following meaning.h is the Hamiltonian for fast motion withR
regarded as a parameter:

h(r,p;R) = (p− 1
2qB ∧ r)2
2m

+ U(r −R) (15)

∂E� is the weight of the phase-space surface with fast energyE:

∂E� =
∫ ∫

dr dp δ(E − h(r,p;R)). (16)

Gradients are with respect toR. (f )t denotes the functionf on the fast phase space,
evaluated at the pointrt , pt that has evolved fromr, p in time t with frozenR. Finally,
〈f 〉E is the (microcanonical) phase-space average of the functionf over the energy surface
E:

〈f 〉E ≡ 1

∂E�

∫ ∫
dr dp f (r,p)δ(E − h(r,p;R)). (17)

For massive billiards it will be convenient to use the noncanonical but measure-
preserving transformation from(r,p) to (r, mv). Thus

dr dp = dx dy dpx dpy = m dr dv. (18)

Then a short calculation gives

∂E� = 2πmA (19)

whereA is the area of the domain for whichE > U(r−R), which for billiards is the area
of D (and of course independent ofE). From (15),

∇h = ∇h(r;R) = −∇U(r −R) (20)

and so, from (6),

(∇h)t = mr̈ − qṙ ∧B = ∂t (mv − qr ∧B). (21)

Using this, the time integral in (14), over the frozen motion, can be evaluated, with the
result

BG = − 1

4πmA
∂E [∂E�〈(mv − qr ∧B) ∧ ∇U(r −R)〉E ]

= qB 1

4πmA
∂E [∂E�〈r · ∇U(r −R)〉E ]. (22)

In writing the first equation, the contribution from the upper limit,t = ∞, has been ignored
(it is elminated by the slightest regularization, for example exp(−εt) in the integrand), and
in writing the second equation use has been made of (18) and〈v〉 = 0 for frozenR.
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The remaining average in (22) gives

BG = qB 1

2A
∂E

∫ ∫
D

d2r2(E − U(r −R))r · ∇U(r −R)

= qB 1

2A

∫ ∫
D

d2x δ(E − U(x))(R+ x) · ∇U(x)

= −qB 1

2A

∫ ∫
D

d2x (R+ x) · ∇2(E − U(x)). (23)

Now

(R+ x) · ∇2 = ∇ · [(R+ x)2] −2∇ · (R+ x) = ∇ · [(R+ x)2] − 22. (24)

The divergence gives zero in (23), and the remaining integral givesA and soBG = qB as
claimed in (3).

Although this derivation has made use of the microcanonical distribution for chaotic
systems, a similar formulation can be given for integrable fast motion; the result is the
same. One way to see this is to adapt the elementary argument leading to (13). For
integrable motion the first equation in (11) need not be true, but nevertheless the average
〈r(t)〉 will differ from R(t) only by a constant shift, and this is sufficient to justify the last
equation in (11), leading again to (13).

3. Numerical illustrations

The circle magnetic billiard is integrable for frozenR (see figure 2 and Robnik and Berry
(1985)). For the general massive billiard, whereR is allowed to move, there is an additional

Figure 2. Trajectory of a fast particle inside a frozen
circular billiard. The caustic (envelope of the trajectory)
indicates integrability. The Larmor radius in the applied
magnetic fieldB is 0.65 times the diameter of the circle;
200 collisions are shown.

Figure 3. Geometric magnetism for the trajectory of
the centre of the massive circular billiard (open circle)
with mass ratio (a) m/M = 0.01 and (b) m/M = 0.4,
initial speed ratio|V0|/|v0| = 0.1 and initial Larmor
radius equal to the diameter of the circle; 600 collisions
are shown. In (a) the magnification shows the straight
segments between collisions.
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constant of motion, namely the total angular momentum (which is perpendicular to D and
so effectively a scalar)

T = r ∧ p+R ∧ P . (25)

Together withH and the two components ofC defined by (9), this gives four conserved
quantities, strongly suggesting (as does numerical evidence to follow) that the massive
billiard is integrable. Integrability would hold similarly for any circular potentialU(|r−R|),
not just billiards. However, these four constants are not involution (they do not commute),
so this argument is not watertight. Three mutually commuting quantities areH , T and
C ·C, but we are unable to identify the fourth.

Figure 3(a) shows a trajectory of the centre of the circle. It consists of straight segments
between impacts from the fast light particle moving inside it. Geometric magnetism is
obvious in the ‘macroscopic’ view of many segments. The theoretical radius fromBG,
namelyMV0/qB, differs slightly from that observed; the discrepancy can be reduced by
the (post-geometric) replacement ofM by M +m.

Even whenm/M is not small, the curvature of the trajectory of the centre of the
circle is still apparent, although accompanied by fluctuations. Because the whole system
is integrable, these fluctuations form a regular pattern, as figure 3(b) shows. The mean
radius of the trajectory is about 1.1 times the Larmor radius of the orbit ofm (=1.1
circle diameters in this case) which is considerably larger than the 0.25 Larmor radii that
geometric magnetism would predict on the basis of equation (13), and the discrepancy is
not substantially improved by replacingM by M +m. (In the antiadiabatic limitm� M,
mean radius of the centre of the circle would of course be equal to the Larmor radius of
the orbit ofm.)

The square magnetic billiardis nonintegrable for frozenR (Robnik 1986, Berglund
and Kunz 1995). There are both regular and chaotic regions in the phase space, with chaos
predominating when|B| is such that the Larmor radius is comparable with the length of
the side of the square (see figure 4). WhenR is allowed to move, geometric magnetism
is obvious whenm/M � 1 (figure 5(a)). Whenm/M is not small, the curvature of the

Figure 4. Surface of section for a fast particle inside a
frozen square billiard. The Larmor radius in the applied
magnetic field,B, is 1.18 times the length of the side
of the square; 5000 collisions are shown.

Figure 5. Geometric magnetism for the trajectory of the
centre of the massive square billiard (open square) with
mass ratio (a) m/M = 0.01 and (b) 0.4, initial speed
ratio |V0|/|v0| = 0.1 and initial Larmor radius equal
to 1.18 times the length of the side of the square; 600
collisions are shown. In (a) the magnification shows
the straight segments between collisions.
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Figure 6. The frozen magnetic Sinai billiard. (a)
Typical trajectory on the torus, with Larmor radius equal
to the box (torus) size, and disc radius 0.28 times the
box size. (b) Surface of section (registering collisions
of the fast particle with the disk), with Larmor radius
equal to five times the box (torus) size, and disc radius
0.1 times the box size; 2000 collisions are shown.

Figure 7. Trajectory of the centre of the disk in the
massive magnetic Sinai billiard, with disk radius 0.49
times the box size (so that the disk nearly fills the box),
m/M = 0.001, and initial speed ratio|V0|/|v0| = 0.1,
(a) on the torus (10 000 collisions), where geometric
magnetism is present but hard to see, (b) on the periodic
plane (20 000 collisions), when the torus boundary
conditions are unfolded, where geometric magnetism
is obvious.

trajectory of the square is still apparent, but the fluctuations are larger than for the circle,
and, because of the nonintegrability, irregular, as figure 5(b) shows.

In the Sinai magnetic billiard∂D is a disk (with centreR) which together with the
light (magnetized) particle that strikes it moves not in the plane but in a box with periodic
boundary conditions, that is a torus. Therefore the Sinai billiard is inside-out in comparison
with the other massive billiards. For frozenR, numerical computation (e.g. figure 6)
suggests that the motion of the light particle is chaotic for all|B|. WhenR is allowed
to move, the trajectory of the disk does not appear to show geometric magnetism when
displayed on the torus (figure 7(a)), but geometric magnetism is revealed when the trajectory
is unfolded into the periodic plane (figure 7(b)).

Geometric magnetism is an adiabatic effect, influencing the slow motion on times short
enough for nonadiabatic energy exchange between the fast and slow subsystems to be
negligible (although long enough for the fast particle to make many collisions). If the fast
motion is chaotic, the slow motion over much longer times should be strongly influenced
by nonadiabatic effects. We illustrate this by computing the positions of the fast particle for
many collisions with∂D. These should lie within a circle whose radiusrmax is determined by
(10) with the largest value ofVcm compatible with the conserved total energy,E, determined
by the initial conditions. Since

(M +m)2V 2
cm = |MV +mv|2

= M2V 2+m2v2+ 2mMV · v = 2E(M +m)−mM(V − v)2 (26)
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Figure 8. The points mark collisions of the fast particle with∂D, for (a)
the magnetic square billiard with unit side and (b) the magnetic circle
billiard with unit radius (here the points fill out the black annulus). The
parameters arem/M = 0.08, |V0|/|v0| = 0.063 and the initial Larmor
radius is 1, and the large circles show the outer limitrmax = 3.764
predicted by (27); 20 000 collisions are shown.

the largest value ofVcm occurs whenV = v, giving

rmax=
√

2EMtot

qB
(27)

Figure 8(a) shows that for the square massive billiard, whose dynamics is chaotic, the fast
particle explores the whole of the interior of this circle. Over such long times it is reasonable
to assume equipartition of energy betweenm andM, and a short calculation then predicts
the rms radius of the fast particle to bermax/

√
2, again in accord with figure 8(a). For the

circle massive billiard, which is integrable, the additional constant of motion (25) constrains
the particle to an annulus insidermax, as figure 8(b) shows.
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